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Abstract. Electromagnetic fields of the toroidal solenoid with a time-dependent current 
are studied. Their properties and the possible practical applications of the results obtained 
are discussed. 

1. Introduction 

Treating the Aharonov-Bohm effect, one frequently encounters a situation in which 
the magnetic flux inside the solenoid S is time dependent. The non-zero electric field 
arising outside S changes the angular momentum of a charged particle [ 13. Usually it 
is suggested [2] that the magnetic field H is equal to zero outside S. This fact has 
recently been disputed in [3-51. It was noted in [3] that if the electric field E changes 
with time outside S, then necessarily H # 0 there. This leads to the scattering of charged 
particles in this magnetic field. It was proved in [4] that the absence of H outside S 
is consistent with the Maxwell equations if the magnetic flux 4 inside S does not 
depend on time or has linear time dependence. Finally, it was stated in [5] that instant 
switching on of the current in an infinite solenoid leads to a cylindrical wave expanding 
with the light velocity. Those papers are purely of a qualitative nature; no concrete 
expressions for fields are given. Naturally, the electromagnetic fields of solenoids were 
studied earlier without reference to the Aharonov-Bohm effect. Two interesting papers 
by Miller [ 6 , 7 ]  should be mentioned, in which the correct temporal dependence of 
the solenoid electromagnetic field was guessed. The present treatment aims to justify 
and realize the qualitative considerations of [3-71 using the toroidal solenoid as an 
example. The physical consequences of the time-dependent current flowing through 
the winding of an infinite cylindrical solenoid were studied in [8,9]. The plan of our 
exposition is as follows. In section 2 we study the properties of the toroidal solenoid 
with a constant current in its winding. It turns out that the magnetic field vanishes 
inside this solenoid for a very specific current density. In section 3 we obtain vector 
potentials (vP),  field strengths and Poynting vectors for a number of temporal dependen- 
ces of the solenoid current. In section 4 we discuss the possible applications of the 
results obtained in the previous two sections. 

2. Some facts on the toroidal solenoid with a constant current 

Let the solenoid winding be performed on the torus 
( p - d ) ’ + ~ * = R ’ .  (2.1) 
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Its surface may be parametrized as follows: 

x = ( d  + R COS 4 )  COS cp 

z = R sin (1, 

y = ( d  + R cos 4 )  sin cp 

( 0 < (0 < 2 7r, 0 < $ < 2 7r). 

The infinitesimal surface element is equal to d S  = R ( d  + R cos 4 )  d$ dcp. In what 
follows we shall frequently use the toroidal coordinates 

For p fixed, points P ( x ,  y ,  z )  fill the surface of the torus with parameters d = a coth p, 
R = a/sinh p. Let p = p a  correspond to the torus T. Then for p > pa (respectively, 
p < po) the point P ( x ,  y ,  z )  (where x, y ,  z are given by ( 2 . 2 ) )  lies inside (respectively, 
outside) i? The infinitesimal volume element is expressed in toroidal coordinates as 

sinh p d p  d e  dcp 
d V = a 3  

(cosh p - COS 8)’ ‘ 

We shall distinguish two types of the solenoid winding. First, when each particular 
coil of the winding lies in the plane cp =constant. We call this type of winding as a 
meridional one. Second, when each particular coil lies in the plane z = constant. We 
refer to this as to latitude winding. Sometimes these two types of winding are called 
toroidal and poloidal, respectively (see, e.g., Status Report on Controlled Thermo- 
nuclear Fusion, Vienna 1990). Consider these two cases separately. 

2.1. Meridional winding 

In the stationary case the magnetic field H is equal to zero outside the solenoid S and 
H, = H, = 0, H, = g / p  inside it. The constant g may be expressed through either the 
total number of coils N and current I ( g = 2 N Z / c )  or the magnetic flux inside S 
g = ( 4 / 2 7 r ) ( d  --)-I. For the constant I the VP components in the Coulomb 
gauge were written explicitly in [lo]. Later they were used for the electron scattering 
studies on the toroidal solenoid [ 113. We now briefly review their properties. Only two 
cylindrical components ( A ,  and A ? )  are different from zero: A,  = g A r ’ ,  Al = gAlo’ 
where 

cos cp 

cosh U =  r 2 + d 2 + R 2 - 2 d p c o s c p  

Q,,*(COSh v )  
A?’ = JX - 

2 7  Jo2T d p  [ ( p  cos cp - d ) 2 +  z * ] ~ ’ ~  

r2  = p 2 +  z 2 .  
2 R [ ( p  COS q ~ - d ) * + ~ ’ ] ’ ’ ’  

( 2 . 3 )  

A ,  and A,  are even and odd functions of z, respectively. Further, A,  vanishes on the 
z axis and in the z = 0 plane. At large distances from the solenoid A: and A,  fall as r-’?: 

1 1 + 3  cos 28, 3 sin 28, 
8 r3  8 r3 ‘ 

A ,  t - 7rgdR’ A , = - r g d R ’ -  

+ r and  0, are the usual spherical coordinates.  
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Consider now the A ,  behaviour in the z = 0 plane. At the origin 

A;  = g 

Inside the solenoid (for p = J d ’ -  I?’) 

For large values of p it is negative: A ,  = - r g d R 2 / 4 p 3 .  On the z axis 

A ,  = g a d  Q l 1 2 (  d 2 + z 2 + R i )  
(d2  + z2)3!4 2 R m  

which goes to rgdR2/21z]’ for large values of z. For the thin solenoid ( R < <  d )  the 
integrals (2.3) can be taken in a closed form. Outside S one obtains 

For the thin solenoid in the z = 0 plane Ai grows from r g R 2 / 2 d 2  at the origin up  to 
g R / 2 d  at the inner boundary ( p  = d - R )  of the solenoid. Inside it A ,  vanishes 
approximately at p = d and takes the negative value - g R / 2 d  at the outer ( p  = d + R )  
solenoid boundary. For larger values of p A: remains negative and goes to zero: 
A ,  = -.rrgdR2/4p3. Consider now A Z ( p ,  z )  as a function of z for p fixed. On the z axis 
A, = r g R 2 d / 2 ( z * +  d2)3’’. For fixed p < d, A ,  is positive for all z ;  for p > d it is negative 
for small z and positive for larger z. Zeros of A ,  in the ( p ,  z )  plane lie on the curve 
which originates at the point (d ,  0) and has asymptotes z = *p/&‘. This behaviour of 
A ,  reflects the fact that A, (p ,  z )  dz  is equal to the magnetic field flux if the integration 
path passes through the solenoid hole ( p  < d )  and zero otherwise ( p  > d ). 

2.2. The latitudinal winding 

The contribution to the V P  of a particular coil lying on the torus surface ( 9  = constant 
or  z = constant) equals: 

(2.5) 

H e r e j  is the current in a particular coil, n, is a unit vector defining the current direction 
in this coil ( n ,  = n, cos cp - n, sin c p ) .  The single non-vanishing component of the V P  is 

Here s = d + R cos 4, t 2  = p 2 +  ( d  + R cos $)’+ ( z  - R sin $)?; Q Y ( x )  is the Legendre 
function of the second kind. Integrating (2 .6 )  with respect to 9, one obtains the V P  of 
the solenoid with a latitude direction of the current: 
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At large distances it falls as r-’ 

2 d j d  sin e5 
cr2 

A, = 

( r  and Bs are the usual spherical coordinates). In deriving (2.7) we implicitly assumed 
the uniform distribution of coils over the torus surface (or more precisely, the coil 
density in the cp =constant plane is taken to be independent of the angle 41) .  The 
current density corresponding to VP (2.7) is determined by applying to it the Laplacian: 
AA = -(47r/c)j. This gives 

6 [ J ( p - d ) ’ + z 2 -  RI (cosh ~ O - C O S  0)’ 
-Po) - 

a 3  - nv ’ = “ J  R ( d + R c o s $ )  
(2.8) 

R = a/sinh po d = a coth po. 

It is convenient to rewrite VP (2.7) in the toroidal coordinates 

Here function f n ( p ,  po) equals Py!,,2(0)Q(nl-l,,2 inside the solenoid ( p  > po) and 
Q?!1,2(0)Py?,,2 outside it ( p  < po); P ^ , ( x )  and Q;(X) are associated Legendrefunctions 
of the first and second kind, respectively; further, P^,(O) = P^,(cosh po) and Q^,(O) = 
@(cosh po). In this equation and in the following ones we do not indicate the argument 
of the Legendre functions if it is cosh p. In addition, the summation, if not otherwise 
stated, is extended from n = 0 to n = 00. It follows from (2.7) or (2.9) that the magnetic 
field H does not vanish inside the solenoid. 

2.3. On the disappearance of magneticjield inside the solenoid 

On the other hand, it is stated frequently (see, e.g., [7,  121) that for the current flowing 
in the latitude direction, magnetic field H vanishes inside the solenoid. Now we specify 
the conditions under which this takes place. For this we present the equation H = 
rot A = 0 in toroidal coordinates. Bearing in mind that A,  is the single non-vanishing 
component of the VP, we obtain 

H, = 
(cosh p -cos 0)’ 

H, = 0. 
(cosh p -cos 6)’ 

a s i n h p  H e = -  

From this it follows at once that H = O  inside the solenoid ( p  > po) if 

cosh p -COS B 
sinh M 

A, = CO CO = constant. (2.10) 

Clearly, A ,  should satisfy the Poisson equation. We present this equation in the form 
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Here j ,  is a single-valued function to be determined later. The finite solution of this 
equation is 

(2.12) 1 pll, ”-, cos n8 A, = (cosh p - COS 8 ) ” >  D, - 
1 + S n o  

outside the solenoid ( p  <po)  and 

1 
1 + an0 

A, = (cosh p -COS 8 ) ” *  F,, - cos n e  (2.13) 

inside it. The physical VP should be continuous everywhere and particularly at p = p,. 
This gives 

F, = D,,P~1!l ,2(o) /~~i l~~(o) .  

Further, inside the solenoid ( p  > po), (2.13) should coincide with (2.10). This deter- 
mines F,,: 

Thus, we have 

cosh p -cos 8 
sinh p 

A, = CO 

Jz cos n8 1 
7T 

= CO - (cosh p -COS 8 ) ” *  1 - 7 Q!,’!l,2 
1 + tinO n2 - 5  

(2.14) 

inside the solenoid and 

COS ne 1 Q:!~,JO) 
P!,.!1,2 (2.15) 

Jz 
7T I + S , , ~  n 2 - i  ~ ( n 1 i ~ , ~ ( 0 )  

A,  = CO- (cosh p -COS e) ” *  - - 

outside it. According to (2.11), the discontinuity of aA,/ap at p = po determines j ( 8 ) :  

cC, (cosh p,-cos 8)”’ COS n8 1 
j ( 8 )  = - c- (2.16) 

2Jz.rr2a2 sinh p, 1 + S n O  P!!iI/*(O). 

To this current density then corresponds the distribution of the number of coils, which 
is proportional to 

At large distances A, falls as F2:  

(2.17) 

We conclude that the disappearance of H inside the solenoid when the current is 
directed latitudinally takes place for the very specific current density (2.16) or for the 
distribution of the number of coils (2.17). 
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3. Toroidal solenoid with a time-dependent current?’ 

Let the current in the solenoid winding change with time. Contrary to the cylindrical 
solenoid case [ 8 , 9 ] ,  the electromagnetic fields of the toroidal solenoid do not have 
postaction properties. This means that all transient effects (which are due to the sudden 
switching on of the current in the solenoid) come to an end at a given point P as soon 
as the action from the most remote solenoid point arrives at P. Consider a few concrete 
forms of temporal dependences. 

3.1. g = j08(t) 

For 

[ ( p  + d)’+ z ’ ] ’ , ~  + R 
t > t , =  

C 

the VP at the point P ( p ,  z, 9) is 

A, = joALo’ A, = joAp’ ( 3 . 1 )  

where A?’ and Abo’ are given by (2.3). Their properties were discussed in the previous 
section. Now we have the following physical picture. For the fixed time t the field 
strengths and Poynting vector differ from zero inside the shell 

-d sin 8,+ [(  ct - R)’- d’ cos’ Os]”* s r s d sin Os+ [ ( c t  + R)’  - d’ cos’ 

This shell has a width of -2R along the z axis and a width of 2 ( d + R )  along the x 
or y axes. It expands at the velocity of light. In front of this shell ( r a  
[ ( c t  + R)’ - d2 cos’ 8 s ] ’ / 2  + d sin 8,) the vector potential is equal to zero. Behind it 
( O ~ r ~ [ ( c t - R R ) ’ - d 2 c o s 2  8s]”’-d sin 8, it is given by (3.1). 

3.2. g(t) = 0 for t ( 0  and g =j,t for t>  0 

Then, for t > t l  we have A, = j ,  tAr ’ ,  A, = j ,  tAlo’ where A?’ and AY’ have been defined 
above. Outside S only the electric field strengths differ from zero: E,, = - ( l / c ) j , A r ’ ,  
EZ = - ( l / c ) j , A ? ) .  Thus, there is no electromagnetic energy flow into the surrounding 
space for the toroidal solenoid with a linearly growing current. The Poynting flux is 
concentrated inside S near its surface and directed inside the solenoid. For simplicity, 
we prove this for the thin solenoid only. The V P  inside S, expressed in toroidal 
coordinates, is given by [ I O ]  

(3 .2)  

It follows from this that only the 8 component of A differs from zero inside solenoids: 
A, = -j,r exp(-p)  (for the thin solenoid exp(-p)  = [ ( p  - d ) ’ + ~ ’ ] ~ ’ ’ / 2 d ) .  Non- 
vanishing field strengths equal E, = ( l / c ) j ,  exp( - p ) ,  H ,  = j ,  t / p .  The Poynting vector 
is directed towards the solenoid equatorial line ( p  = d, z = 0 ) :  S = S,,e,, S, = 
j ,  t exp( -F ) /47rpc2. Let a closed resistive loop C pass through the solenoids hole. The 
constant electric field outside S induces the current j = a E ,  ( U  is the wire conductivity) 
in C. As a result, Joule heat is produced in C. We know that the energy flow for t > t ,  
is zero outside S. In view of this fact it is unclear how the energy is transferred from 

A, = j ,  t exp( - p )  sin 8 A, = - j , t  exp(-p)  cos 8. 

t The results of this section are referred to solenoids with a meridional winding. 
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the solenoid to the resistive loop C. The following intricate answer was found in [ 131. 
The current flowing in C induces magnetic field U. Its lines of force are directed along 
the circumferences which surround C. As a result, the Poynting flux ( 1 / 4 ~ c ) E , H  arises, 
which is perpendicular to C and which ‘flows’ into C. In other words, it is just the 
current induced in C that gives rise to a non-zero energy flow. 

The analysis of the following gedanken experiment is very instructive. Let a wire 
loop C pass through the hole of the toroidal solenoid in which the linearly growing 
current flows. This loop may be part of a resistance bridge with an  external battery 
chosen in such a way as to compensate the current induced in C by the solenoid 
constant electric field. It is known [14, 151 that the resistance of the current loop 
threaded by the magnetic flux is a periodic function of this flux value. In view of this, 
the balance of the bridge will be periodically disturbed. This may be registered with 
some device. Now, a question arises as to how the energy is transferred from the 
solenoid to this device? According to the reasoning of [ 131, this proceeds along the 
following lines. The change of the solenoid magnetic flux changes the resistance of C. 
As a result, a uncompensated current appears in C, which produces the magnetic field 
H concentric to C. The Poynting vector constructed from the electric field E,, and 
induced magnetic field H is perpendicular to C and may be viewed as a candidate 
for the energy transfer. 

3.3. g =j,r’e(t) 

For t >  t ,  

Here A:’ and  Aio’ have been defined earlier, while A:’ and  A;’’ are given by 

d p ( d  - p  COS cp)F(p ,  Z, cp) 

At large distances A:” and  A:’ fall as r - ‘  
TR2d  

sin 28, -- r R 2 d  -- (3+COS2es) 
8 r  8 r  

Further, A:’ equals zero on the z axis and  in the z = 0 plane. On the z axis A‘,” is of 
the form 

z’+d2+ R’ 
2 R m ’  

cosh po = 

For the thin solenoid the VP components are simplified: 



5762 G N Afanasiev 

The following field strengths are different from zero: 

We observe that outside the solenoid there is a magnetic field which does not depend 
upon the time. For r -$ a3 one gets 

irdR2j2t 
E, - sin 28,  E,.= -- (1  + 3  COS 28,) 

3.rrdR’j2t 
4cr’ 4cr3 

.rrdR2j2 . H,= -- 
2 c 2 r 2  s*n o s .  

The energy flow through the spherical surface of a sufficiently large radius is directed 
off the solenoid 

1 n-d2R4j:t sin2 os 
S,  = - EoH, = 

4 irc 16c4rs 

3.4. g(t) =j,t3e(r) 

Then, for t >  t l  one has 

3 3 ( 0 )  3 irR2dj3 
A, = j ,t  A ,  +? j3tAj”+- 

C C c3 ’ 
A, = j 3 t 3 A ~ ) + - j j 3 t A ~ ’ )  

The non-vanishing field strengths are 

For large distances 

3irdR’sin e, j ,  ( c:t2) 3j3t.rrdR2 sin 8, 
E o -  - 1+, H, 3 - 

4c3 r 2c’r’ 

The radial component of the Poynting vector is directed off the solenoid: 

s, = 9.rrj3td2R4 32c6r3 sin’ Os (l+F), 
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3.5. The solenoid current is a periodical function of time: g = go cos wt 

For small solenoid dimensions ( R / r < <  1, K R  << 1, d / r < <  1, K d  << 1) the VP equals 

A C O S  es 
A,=- (cos $ + K r  sin $) 

2 r3 

Asin 8, 
4r 

A, = ~ [ ( 1  - K 2 r 2 )  cos $+ K r  sin $3 

A = .IrgodR2 $=  K r - w t  K = w j c .  

The non-vanishing electromagnetic strengths are 

K A COS ed K 2 A  sin es 
E, = ( K r  cos $-sin 4) H ,  = ( K r  sin $ + cos $) 

2 r3 2r2 

K A sin 8, 
4r3  E, = [ ( K 2 r 2 -  1) sin $+ K r  cos $1. 

At large distances from the solenoid ( K r  >> 1, i.e. in the wave zone) one obtains 

K ’ A  sin e, sin 
E, = H ,  = 

K ~ A  
E,  = - COS es COS CL 

2 r2 4r 

These limiting values of field strengths should coincide with those radiated by the 
toroidal magnetic moment [ 161. This indeed takes place. The radial component of the 
Poynting vector is directed off the solenoid: 

1 1 
S,=- E H ----(EB)*. 

4TC e Q-47Tc 

The integral energy flow through the sphere of sufficiently large radius is 

1 
r 2  1 S, dCI=% ( A K ’  sin $)’ 

We conclude: time dependence of the solenoid current generally leads to a non- 
vanishing magnetic field outside the solenoid. The flow of the electromagnetic energy 
is directed off the solenoid. 

4. Conclusion 

There can be a twofold intepretation of the results obtained. First, they can be viewed 
as an exercise in mathematical physics. In fact, the remarkable properties of the toroidal 
solenoid are practically unknown and the matter presented here and in [ lo]  fill this 
lacuna. From the non-vanishing of the magnetic field outside the solenoid it follows 
that the transition process to the stationary regime in the A B  effect theory should be 
reconsidered. Do the results presented have more practical use? There are branches 
of applied physics in which enormous magnetic fields are stored at first and spent 
later. One of these branches is the electromagnetic launch technology (symposia on 
this subject are held regularly and their proceedings are published in IEEE Transactions 
on Magnetics. The last one devoted to this subject is volume 25, no 1 (1989)). The results 
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of section 3 show that the current flowing in the winding of the toroidal solenoid (in 
which the magnetic field is accumulated) should vary linearly with time in order to 
escape the irreversible electromagnetic energy losses into the surrounding space. The 
second possible application is the construction of a pulse transformer for electromag- 
netic launching. It was shown in [12] that a toroidal transformer with a vanishing 
magnetic field inside it ('external field toroid' according to terminology of [12]) can 
transfer 99.9% of the stored energy into the secondary winding, thus greatly reducing 
compressive forces (which tend to destroy a transformer's windings). The results of 
subsection 2.3 show that a very specific type of winding should be used in order that 
H should vanish inside the toroidal solenoid. The third branch in which the obtained 
results can be applied is the toroidal plasma and especially the electromagnetic field 
in a Tokamak. The use of explicit expressions for the V P  obtained in [ lo] and  in the 
present work can simplify the complicated system of equations used for the description 
of the toroidal plasma (see, e.g., [17]). 
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